

API Integration Manual

For

Daikin DKN Cloud Wi-Fi Adaptor

IM-DKNAPI-201908

 TABLE OF CONTENTS

1 Introduction .. 2

2 Authentication .. 3

2.1 Oauth2 Fundamentals ... 3

2.1.1 Oauth Roles ... 3

2.1.2 Third Party Client Application Registration ... 3

2.1.3 Client ID and Client Secret ... 3

2.2 Oauth2 Authorization Code Grant Type .. 4

2.2.1 Refresh Token .. 5

2.3 Open API OAuth2 Implementation ... 5

2.3.1 Web Interface .. 5

2.3.2 Programmatic Interface... 7

2.4 Oauth2 Best Practices ... 10

3 API ... 12

3.1 Status Requests ... 12

3.1.1 Devices ... 12

3.1.2 Device State ... 14

3.2 Command Requests ... 14

3.2.1 Device – State .. 15

3.2.2 Device – Setpoint ... 15

3.2.3 Device – Mode ... 15

3.2.4 Device – Speed .. 16

4 Errors ... 17

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

2

1 INTRODUCTION

The following document describes the use of the DKN Cloud NA third party API, further on called

Open API, including the authentication flow and all available requests/actions.

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

3

2 AUTHENTICATION

The authentication mechanism, which allows a third party service to connect to the DKN Cloud NA

ecosystem, is based on the OAuth2 standard implementation. OAuth2 is an authorization

framework that enables applications to obtain limited access to user accounts on an HTTP service.

It works by delegating user authentication to the service that hosts the user account, and

authorizing third-party applications to access the user account. The following sections will provide

an overview of OAuth2 roles, the Authorization Code grant type (Authorization flow used for the

Open API) and how it’s been adopted to work with the Open API. This section is guided towards

developers.

2.1 Oauth2 Fundamentals

2.1.1 Oauth Roles

Oauth defines four roles:

 Resource Owner, User: The resource owner is the user who authorizes an application to access
their account. The application's access to the user's account is limited to the "scope" of the
authorization granted (e.g. read or write access). In this case, the user corresponds to a
registered user in the DKN Cloud NA App, and the allowed “scopes” by the Open API are the
user’s devices and groups information.

 Resource / Authorization Server, API: The resource server hosts the protected user accounts,
and the authorization server verifies the identity of the user then issues access tokens to the
application. In the Open API implementation, the DKN Cloud NA ecosystem fulfills both the
resource and authorization server roles.

 Client, Third Party Application: The client is the third party application that wants to access the
user's account. Before it may do so, it must be authorized by the user, and the authorization
must be validated by the Server.

2.1.2 Third Party Client Application Registration

Before using Oauth, the third party client application must be registered with the Open API service,

where the following details of the application must be provided:

 Application Name

 List of Redirect URI or Callback URL

The redirect URI is where the Open API will redirect the user after they authorize (or deny) the

application, and therefore the part of the application that will handle authorization codes or access

tokens. This must be seen as a list of valid URLs. As we will see next, on the authentication

process using a web interface based flow, the application must specify a redirect URL. This URL

must match one of the registered URLS. This is a safety measure used to ensure that the user will

only be directed to appropriate locations.

As of now, this registration is done exclusively on demand, and requires manual interaction
of the system administrator of the DKN Cloud NA ecosystem.

2.1.3 Client ID and Client Secret

Once the third party application is registered, the Open API service will issue "client credentials" in

the form of a client identifier and a client secret. The Client ID is a publicly exposed string that is

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

4

used by the service API to identify the application, and is also used to build authorization URLs that

are presented to users. The Client Secret is used to authenticate the identity of the application to

the service API when the application requests to access a user's account, and must be kept private

between the application and the API.

2.2 Oauth2 Authorization Code Grant Type

OAuth 2 defines four grant types, each of which is useful in different cases. The one used for the

Open API corresponds to the Authorization Code Grant Type. It’s the most commonly used

because it is optimized for server-side applications, where source code is not publicly exposed, and

Client Secret confidentiality can be maintained. This is a redirection-based flow, which means that

the application must be capable of interacting with the user-agent (i.e. the user's web browser) and

receiving API authorization codes that are routed through the user-agent. Nevertheless, it can also

be used with other server-side services which lack of web interface (programmatic interface).

Here describes the authorization code flow:

The above diagram represents a typical authorization flow.

Here is a more detailed explanation of the steps in the diagram:

1. The application requests authorization to access service resources from the user

2. The user must log in to the Open API environment and authorize the request.

3. If the user authorized the request, the application receives an authorization grant (Code)

4. The application requests an access token from the authorization server (API) by presenting
authentication of its own identity (Client Secret and Client ID), and the authorization grant (Code).

5. If the application identity is authenticated (registered in the Open API environment) and the
authorization grant is valid (Code hasn’t expired or already been used), the authorization server (API)
issues a pair of access token/refresh token to the application. Authorization is complete.

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

5

From now on, the application is authorized to make requests to the API in behalf of the user,

provided the request presents the access token for authentication. If the access token is valid, the

resource server (API) serves the resource to the application.

2.2.1 Refresh Token

The authorization response contains a pair of tokens: an access token and a refresh token. The

access token is the token used in every request made to the API to authenticate the request in

behalf of the user. The refresh token on the other hand is used for requesting a new access token

when this one expires.

Once the application has an access token, it may use the token to access the user's account via the

API, limited to the scope of access, until the token expires or is revoked. After an access token

expires, using it to make a request from the API will result in an "Invalid Token Error" (401 status).

At this point, the refresh token can be used to request a fresh access token from the authorization

server.

Now that the Oauth2 foundations have been explained, we will describe in detail the different

requests and responses handled by the Open API. The following must be used as an

implementation reference by the third party services for a successful integration with the DKN Cloud

NA’s Open API.

2.3 Open API OAuth2 Implementation

As prerequisites, users must have a valid account in both environments (third party application and

DKN Cloud NA), the third party application must be registered as an authorized entity by DKN

Cloud NA (meaning that the third party will have a valid client_id/client_secret token pair), and for

third party applications with web interface, a valid Redirect URI.

Since the authentication flow involves the linking of accounts between services, the user must first

log in to DKN Cloud NA and authorize the third party service to access his information. This can be

done in two ways: through the DKN Cloud NA website (for third party services with their own

websites/applications) or through the programmatic interface (recommended for integration and

automation systems).

All requests must be done using HTTPS protocol, and will throw an error if trying to use plain HTTP.

Note: the following HTTP request examples will be done using the cURL agent format.

2.3.1 Web Interface

Step 1. If the third party application wants to make the authorization through a web interface based

flow, the application must redirect the user to the following authorization URL:

https://dkncloudna.com/#/oauth?response_type=code&client_id=CLIENT_ID&redirect_uri=CALLBA

CK_URL&scope=installations+devices&state=STATE_TOKEN

Here is an explanation of the link components. The parameters are set in querystring format:

 https://dkncloudna.com/#/oauth the API authorization endpoint.

 client_id=CLIENT_ID: the application's client ID (how the API identifies the application).

https://en.wikipedia.org/wiki/CURL
https://dkncloudna.com/#/oauth?
https://dkncloudna.com/#/oauth?response_type=code&client_id=CLIENT_ID&redirect_uri=CALLBACK_URL&scope=read
https://dkncloudna.com/#/oauth?response_type=code&client_id=CLIENT_ID&redirect_uri=CALLBACK_URL&scope=read
https://dkncloudna.com/#/oauth?response_type=code&client_id=CLIENT_ID&redirect_uri=CALLBACK_URL&scope=read

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

6

 redirect_uri=CALLBACK_URL: where the service redirects the user-agent after an
authorization code is granted. This value must match one of the valid redirect URLs
specified in the registration process.

 response_type=code: specifies that your application is requesting an authorization code
grant.

 scope=installations+devices: specifies the level of access that the application is
requesting. In the case of Open API, the scopes must be installations and devices.

 state=STATE_TOKEN: this parameter preserves, as an encoded format, some state
object set by the client in the Authorization request and makes it available to the client in
the response. Used to mitigate CSRF attacks (explained later in more detail).

When the user clicks the link, they must first log in to the service, to authenticate their identity

(unless they are already logged in). In case the user isn’t logged in to DKN Cloud NA, this link will

redirect the user to the following login page:

Step 2. Once the user is logged in, an authorization site will appear which will request the user to

authorize or deny the third party service to access the user’s information regarding installations and

devices stored in DKN Cloud NA:

https://en.wikipedia.org/wiki/Cross-site_request_forgery

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

7

In this screenshot, the name of the third party application would be visible where the EXAMPLE text

is set. This same is the name provided on the registration process.

Step 3. Once the user authorizes the third party service, the web page will redirect the user-agent

to the application redirect URI specified in the first request, along with an authorization code. This

redirect URI must match one of the valid redirect URLs specified during the client registration. The

authorization code is a temporary code that the client will exchange for an access token. It will be

passed in querystring format. The redirect would look something like this (assuming the application

redirect URL is "example.com"):

https://example.com/?code=hLRlrpTIRUz96crm9PmH5PafXbE4JOAV

At this point, the application has a valid authorization code and can request an Access token. The

remaining requests involved will be explained after describing the programmatic interface access,

since they are the same for both flows.

2.3.2 Programmatic Interface

This interface basically performs the actions described above (Login and Authorize), but without the

need of a browser; only through HTTPS requests. This method is suited for the integration in home

automated systems/BMS. We will describe the structure and format of each of the requests.

Step 1 and 2. Login:

- REQUEST:

- POST https://www.dkncloudna.com/api/v1/auth/login/dknUsa

- HEADERS:

o Accept: application/json

o Content-Type: application/json

- BODY: JSON body parameters:

o email: (String) user email

o password: (String) user password

- EXAMPLE:

curl --location --request POST "https://www.dkncloudna.com/api/v1/auth/login/dknUsa" \
--header "Accept: application/json" \
--header "Content-Type: application/json" \
--data "{\"email\": \"user@email.com\", \"password\": \"examplePassword\"}"

- RESPONSE: This returns a JSON object, where we only are interested in only one of its properties:

token.

Example response:

{
 …
"token": "R7k6xX3HsHH1LIPYrCV5SbtYNH7rzFlb…",
 …
}

The value of this field is needed for the next request. It acts as an authentication token for the DKN

Cloud NA environment, identifying the request in behalf of the user.

Step 3. Authorization of the third party service:

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

8

- REQUEST:

- POST https://www.dkncloudna.com/api/v1/users/oauth2/authorize

- HEADERS:

o Accept: application/json

o Content-Type: application/json

o Authorization: Bearer TOKEN_VALUE

-The value in the Authorization header is the value of the token response property of the
Login response.

- BODY: JSON body parameters:

o entityName: (String) name of the third party entity, as registered when its credentials were
issued.

o client_id: (String) value of the client_id token issued for the entity

o scopes: (String[]) scopes to authorize. Currently this property must equal to an array of two
String elements => devices, installations

- EXAMPLE:

curl --location –request POST "https://www.dkncloudna.com/api/v1/users/oauth2/authorize?" \
--header "Content-Type: application/json" \
--data "{\"entityName\": \"ENTITY_NAME\", \"client_id\": \"CLIENT_ID\", \"scopes\": [\"devices\",
\"installations\"]}"

- RESPONSE: This returns a JSON object, with only one property: redirectUri. The value of this
property will be one of the registered redirect URLs of the entity plus the code parameter (same
format as described in the Web interface process).

Example response:

{
 " redirectUri": "https://example.com/?code=9zHBr2TwEkUanHTlLGvs5EjCPOvdBAHF "
}

The remaining requests are common for both interfaces.

Step 4: Application Requests Access Token. The value of code is used by the third party to ask

DKN Cloud NA for the first access token on behalf of the user. This is a one time use, short lived

token, so it must be used immediately after being received. This code is used in the following

request:

- REQUEST:

- POST https://www.dkncloudna.com/api/v1/open/oauth2/token

- HEADERS:

o Content-Type: application/x-ẃww-form-urlencoded

o Accept: application/json

- BODY: application/x-www-form-urlencoded type body parameters:

o grant_type: (String) its value must be "authorization_code".

o client_id: (String) value of the client_id token issued for the entity.

o client_secret: (String) value of the client_secret token issued for the entity.

o code: (String) value of the code parameter acquired in the previous request.

- EXAMPLE:

https://www.dkncloudna.com/api/v1/users/oauth2/authorize

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

9

curl --location --request POST "https://www.dkncloudna.com/api/v1/open/oauth2/token" \
--header "Content-Type: application/x-www-form-urlencoded" \
--form "grant_type=authorization_code" \
--form "client_id=CLIENT_ID” \
--form "client_secret=CLIENT_SECRET" \
--form "code=CODE"

- RESPONSE: This returns a JSON object, with the following four properties:

o access_token: token used in every request made to the API to authenticate the request in
behalf of the user.

o token_type: Doesn’t apply; its value will always be: Bearer

o expires_in: (Number) value in seconds specifying the lifetime of the token. By default, it will
be two hours

o refresh_token: used for requesting a new access token when this one expires.

Example response:

{
 "refresh_token": "R7k6xX3HsHH1LIPYrCV5SbtYNH7rzFlb",
 "token_type": "bearer",
 "access_token": "duUB2GpPoEg5dBRg2giWfFb0EvBFKg3Q",
 "expires_in": 7200
}

Reached this point, the third party application is authorized to access the DKN Cloud NA

environment through the Open API endpoints on behalf of the user.

When the access token expires, DKN Cloud NA will respond with 401 error codes to every request,
with the following JSON body:

{
 "_error_description": "The access token is invalid or has expired",
 "error": "invalid_token"
}

The third party service will then need to request a new access token for the user. In order to do so,

the service must use the value of the refresh_token property obtained in the response body of the

previous request, and use it as shown in the following request:

- REQUEST:

- POST https://www.dkncloudna.com/api/v1/open/oauth2/token

- HEADERS:

o Content-Type: application/x-ẃww-form-urlencoded

o Accept: application/json

- BODY: application/x-www-form-urlencoded type body parameters:

o grant_type: (String) its value must be "refresh_token".

o client_id: (String) value of the client_id token issued for the entity.

o client_secret: (String) value of the client_secret token issued for the entity.

o refresh_token: (String) value of a valid refresh token for that user.

- EXAMPLE:

curl --location --request POST "https://www.dkncloudna.com/api/v1/open/oauth2/token" \
--header "Content-Type: application/x-www-form-urlencoded" \

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

10

--form "grant_type=refresh_token" \
--form "client_id=CLIENT_ID" \
--form "client_secret=CLIENT_SECRET" \
--form "refresh_token=REFRESH TOKEN"

- RESPONSE: This returns a JSON object, with the same properties as the previous request.

Example response:
{
 "refresh_token": "vkVz6nVhtwb6cZgylCsAEev3eetcrRCG",
 "token_type": "bearer",
 "access_token": "3VOO9NScVG02ibR2ssrGAjIcnblRbG0I",
 "expires_in": 7200
}

We can observe that the refresh token request is basically the same request as the previous

one, with the difference in the request body parameters: for requesting a refresh token, the

value of the grant_type property is now refresh_token, and the code property is substituted

for the refresh_token property.

Both the access token and the refresh token can have it’s TTL (Time To Live) parameter

configured. By default, the Open API issues access tokens of a lifetime of two hours, while the

refresh tokens never expire. This configuration is set up to avoid the need of doing the

authentication process all over again in case the refresh token expires. Also, when issuing a new

pair of access/refresh tokens with the refresh request, the old pair of tokens will be invalidated.

2.4 Oauth2 Best Practices

Before diving in the API itself, we will point out some best practices in order to implement a safe

OAuth2 client.

 OAuth Client should avoid forwarding the user's browser to a URI obtained from a query

parameter since such a function could be utilized to exfiltrate Authorization Codes and Access

Tokens. This refers to the first step of the web interface flow, where the application redirects the

user-agent to the DKN Cloud NA authorization URL. It’s recommended not to ask another

service for this URL, because the request could be intercepted by a malicious entity and return a

different authorization URL. This could lead to redirecting the user-agent to a fake website,

where the user would perform the authorization flow, leaving authorization codes and access

tokens exposed. The recommended way of dealing with this auhtorization URL is storing it in the

application’s backend database, assuring the integrity of the URL.

 If there is a strong need for this kind of redirects, clients are advised to implement appropriate

countermeasures against open redirection, e.g., as described by the OWASP.

 Clients must prevent CSRF and ensure that each Authorization Response is only accepted once.

One-time use CSRF tokens carried in the "OAuth state parameter", which are securely bound to

the User-agent, should be used for that purpose. This encourages the use of the state parameter

in the Authentication flow as a method for the application to identify that the authorization

process hasn’t been tampered. When you use state for CSRF mitigation on the redirection

endpoint, that means that within the state value there is a unique and non-guessable value

associated with each authentication request about to be initiated. It’s that unique and non-

guessable value that allows you to prevent the attack by confirming if the value coming from the

response matches the one you expect (the one you generated when initiating the request). The

state parameter is a string so you can encode any other information in it. The way this works is

that you send a random value when starting an authentication request and validate the received

value when processing the response.

https://en.wikipedia.org/wiki/OWASP
https://en.wikipedia.org/wiki/Cross-site_request_forgery

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

11

 In order to prevent OAuth 2.0 Mix-Up Attacks, OAuth Clients must only process redirect

responses of the OAuth Authorization Server they send the respective request to and from the

same user agent this Authorization Request was initiated with. Clients must memorize which

Authorization Server they sent an Authorization Request to and bind this information to the user

agent (browser sent from) and ensure any sub-sequent messages are sent to the same

Authorization Server.

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

12

3 API

For every API request, the following headers are required:

- Accept: application/json

- Authorization: Bearer {{ACCESS_TOKEN}}

Where the value of ACCESS_TOKEN must correspond to a valid access_token for a specific user.

As for PUT requests, the following header is also required:

- Content-Type: application/json

The headers will be omitted in the following descriptions.

All responses are in JSON format.

3.1 Status Requests

3.1.1 Devices

- REQUEST:

- GET https://dkncloudna.com/api/v1/open/devices

- BODY: none

- RESPONSE:

Example response:

[{
 "_id": "5cd51f1684c09013f6765d9c",
 "name": "Test group",
 "devices": [{
 "mac": "AA:BB:CC:DD:EE:0D",
 "icon": 1,
 "name": "Test"
 }],
 "timezoneId": "Europe/Madrid",
 "units": 0,
 "schedules": [{
 "devices": ["AA:BB:CC:DD:EE:0D"],
 "hour": 14,
 "minutes": 32,
 "power": "on",
 "mode": 1,
 "temp": 23,
 "vent": 3,
 "days": [0,1,2,3,5,6],
 "name": "Program_1",
 "enabled": true,
 "_id": "5be1b5d973269f2fcc88386b"
 }],
 "added_at": "2019-02-10T06:49:58.591Z",
 "type": "advanced"
}]

https://dkncloudna.com/api/v1/open/devices

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

13

The response is an array of JSON objects, where each object is the description of an Installation

(or group). Each installation consists of the following fields:

o _id: installation identifier. It will be used in every command request issued to a device.

o name: installation name, as it appears in the DKN Cloud NA app.

o timezoneId: timezone code for the installation.

o units: installation working units. Values:

 0: Celsius

 1: Fahrenheit

o added_at: date the installation was created.

o type: user’s privileges over the installation. A user can have one of the following roles in an
installation:

 basic: user cannot create schedules; user has permission to control a subset of the
installation’s devices.

 advanced: user has access to every device in the installation, as well as
adding/deleting users to it.

o schedules: Array of JSON objects representing all the schedules an installation has
configured:

 devices: array of devices to which the schedule is applied.

 hour: running hour, 24h format (0-23).

 minutes: (0-59)

 power: if the schedule turns on or off the ACs. Values:

− on: turns on the ACs

− off: turns off the ACs

 mode: operation mode to be set. Values:

− 1: auto

− 2: cooling

− 3: heating

− 4: ventilation

− 5: dry

 temp: setpoint to apply.

 vent: fan speed to apply. The accepted values vary for each unit (depends on the
available speeds). The maximum range covers seven speeds and an auto speed:

− 0: auto speed

− [1, 7]: fan speeds.

 days: array of numbers corresponding to the days the schedule applies. Values: [0,
6], where 0 corresponds to Sunday and 6 to Saturday.

 name: name of the schedule.

 enabled: (Boolean) whether the schedule is activated (true) or not (false).

 _id: schedule unique identifier.

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

14

o devices: Array of JSON objects describing the linked devices from installation which the user
has access to:

 mac: device mac.

 icon: number which identifies the device’s icon as appears in the DKN Cloud NA app.

 name: device name, as appears in the DKN Cloud NA app

3.1.2 Device State

Returns the state parameters of a device.

- RETURN

- GET https://dkncloudna.com/api/v1/open/{{INSTALLTION_ID}}/{{MAC}}

- BODY: none

- EXAMPLE:

- GET https://dkncloudna.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D

- RESPONSE:

{
 "mode": <number>,
 "power": <boolean>,
 "setpoint": <number>,
 "temperature": <number>,
 "speed": <number>,
 "isConnected": <boolean>,
 "error": <number>,
 "errorStr": <string>,
 "warning": <number>,
 "warningStr": <string>
}

o mode: device’s current operation mode.

o power: true if on; false if off.

o setpoint: setpoint for the current operation mode.

o temperature: room temperature.

o speed: fan speed.

o isConnected: if device is online or not (connected to the cloud).

o error: AC unit’s error code. If there’s no error, this field will not be returned.

o errorStr: ASCII representation of the error. If there’s no error, this field will not be
returned.

o warning: AC unit’s warning code. If there’s no warning, this field will not be returned.

o warningStr: ASCII representation of the warning. If there’s no warning, this field will not
be returned.

3.2 Command Requests

The following requests execute idempotent actions over a device. Every action, in case of being

correctly executed, will return the device’s state after applying the command. The format of the

response is the same as the previous device state request.

https://dkncloudna.com/api/v1/open/
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

15

3.2.1 Device – State

Turn on/off the AC.

- REQUEST:

- PUT https://dkncloudna.com/api/v1/open/{{INSTALLTION_ID}}/{{MAC}}/state

- BODY: (JSON). Properties:

o value: (Boolean) true for on; false for off

- EXAMPLE:

- PUT https://dkcloudna.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/state

3.2.2 Device – Setpoint

Specify the AC’s setpoint for the current operation mode.

- REQUEST:

- PUT https://dkncloudna.com/api/v1/open/{{INSTALLTION_ID}}/{{MAC}}/setpoint

- BODY: (JSON). Properties:

o value: (Number) value of the setpoint.

- EXAMPLE:

- PUT https://dkncloudna.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/setpoint

In case the value is out of range, the request will return the following error:

o Response code: 400

o Body:

{
 "_id": "outOfRange",
 "msg": "Value out of range",
 "data": {
 "validRange": {
 "minimumValue": {
 "value": 18
 },
 "maximumValue": {
 "value": 30
 }
 }
 }
 }

Where the minimumValue and maximumValue objects represent the minimum and maximum

values allowed respectively.

3.2.3 Device – Mode

Change the AC’s operation mode.

- REQUEST:

- PUT https://dkncloudna.com/api/v1/open/{{INSTALLTION_ID}}/{{MAC}}/mode

https://dkncloudna.com/api/v1/open/%7b%7bINSTALLTION_ID%7d%7d/%7b%7bMAC%7d%7d/state
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/state
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/state
https://dkncloudna.com/api/v1/open/%7b%7bINSTALLTION_ID%7d%7d/%7b%7bMAC%7d%7d/setpoint
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/state
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/state
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/state

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

16

- BODY: (JSON). Properties:

o value: (Number) value representing a valid mode.

- EXAMPLE:

- PUT https://dkncloudna.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/mode

In case the value is not valid, the request will return the following error:

o Response code: 400

o Body:

{
 "_id": "modeNotSupported",
 "msg": "The thermostat doesn't support the specified mode."
}

3.2.4 Device – Speed

Change the AC fan’s speed.

- REQUEST:

- PUT https://dkncloudna.com/api/v1/open/{{INSTALLTION_ID}}/{{MAC}}/speed

- BODY: (JSON). Properties:

o value: (Number) value representing a valid speed.

- EXAMPLE:

- PUT https://dkncloudna.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/speed

In case the speed value is not valid, the request returns the following error:

o Response code: 400

o Body:

{
 "_id": "speedNotValid",
 "msg": "Speed value not valid",
 "data": {
 "validValues": [
 0,
 2,
 4,
 6
]
 }
}

A successful command for On/Off or Setpoint or Mode change or Fan speed change shall get a

response with current condition of the unit:

{
 "mode": 2,
 "power": true,
 "setpoint": 65,
 "temperature": 79,
 "speed": 2,
 "isConnected": true
}

https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/state
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/state
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/state
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/state
https://dkneu.airzonecloud.com/api/v1/open/5cd51f1684c09013f6765d9c/AA:BB:CC:DD:EE:0D/state

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

17

4 ERRORS

Apart from the previous specific error messages returned by certain requests, there are some

common error responses that must be handled.

The error response always has the same format. Its body is a JSON object with at least two fields,

and an optional one:

- _id: (String) Error id. Used for identifying the error type.

- msg: (String) generic error message describing the error.

- data (optional): (Object) data associated with the error.

Here are the rest of the common errors, listed by their id:

- badJSON: Returned when the request body parameters, if expecting a JSON body, is a malformed
JSON object. Error code: 400. Example response:

{
 "_id": "badJSON",
 "msg": "Malformed JSON"
}

- badParams: Returned when the request body parameters don’t meet the interface (wrong
parameters, wrong type, missing values). Error code: 400. Example response:

{
 "_id": "badParams",
 "msg": "Bad body parameters"
}

- commandNotSupported: Returned when the device doesn’t support the requested command. Error
code: 400. Example response:

{
 "_id": "commandNotSupported",
 "msg": "Command not supported"
}

- databaseErr: Returned when there has been an internal problem with the database (very unusual).
Error code: 500. Example response:

{
 "_id": "databaseErr",
 "msg": "Error DB query"
}

- deviceNotConnected: Returned when trying to set a command to a device when this one isn’t
connected to the Cloud. Error code: 422. Example response:

{
 "_id": "deviceNotConnected",
 "msg": "Device currently not connected to the cloud"
}

- deviceNotFound: Returned when the specified MAC doesn’t match to any existing device. Error
code: 422. Example response:

{
 "_id": "deviceNotFound",

API Integration Manual for Daikin DKN Cloud Wi-Fi Adaptor

18

 "msg”: "No device found"
 }

- installationNotFound: Returned when the installation id specified in the URL path doesn’t exist or is
invalid. Error code: 422. Example response:

{
 "_id": "installationNotFound",
 "msg": "No installation found"
}

 machineError: Returned when trying to set a parameter to a device which has an AC error.

In this case, the parameter is not set to the AC. The ASCII representation of the error code can be

seen in the message’s description. Error code: 422. Example response:

{
 "_id": "machineError",
 "msg": "Error in the AC unit: {{ERROR_ASCII}}"
}

- notAuthorized: Returned when the user doesn’t have permission to act over the specified device.
Example response:

{
 "_id": "notAuthorized",
 "msg": "Error in the AC unit: {{ERROR_ASCII}}"
}

- socketTimeout: Returned when there has been an internal error when communicating with other
services (very unusual). Error code: 500. Example response:

{
 "_id": "socketTimeout",
 "msg": "SocketTimeout with DeviceService"
}

- unknown: Returned when there has been an unhandled internal error (very unusual). Error code:
500. Example response:

{
 "_id": "unknown",
 "msg": "Unknown Error. Try again later"
}

- userNotExist: Returned when the user making the request cannot be found in the database. Error
code: 400. Example response:

{
 "_id": "userNotExist",
 "msg": "No user found with specified data"
}

Our continuing commitment to quality products may mean a change in specifications without notice.

© 2019 Houston, Texas USA

www.daikincomfort.com

19

WARNING

 Only qualified personnel must complete the installation.

 Consult your Daikin dealer regarding relocation and reinstallation of the remote controller.
Improper installation may result in electric shock or fire.

 Electrical work must be performed in accordance with relevant local and national regulations,
and with the instructions in this installation manual. Improper installation
may cause electric shock or fire.

 Only use specified accessories and parts for installation. Failure to use specified parts may result
in electric shock, fire, or controller damage.

 Do not disassemble, reconstruct, or repair. Electric shock or fire may occur.

 Only use specified wiring and verify all wiring is secured. Assure no external forces act on
the terminal connections or wires. Improper connections or installation may result in electric
shock or fire.

 Confirm power to the unit is OFF before touching electrical components.

